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Summary

In the mammalian retina, 10–12 different cone bipolar cell

(BC) types decompose the photoreceptor signal into parallel
channels [1–8], providing the basis for the functional diver-

sity of retinal ganglion cells (RGCs) [9]. BCs differing in their
temporal properties appear to project to different strata of

the retina’s inner synaptic layer [10, 11], based on somatic
recordings of BCs [1, 2, 4, 12–14] and excitatory synaptic

currents measured in RGCs [10]. However, postsynaptic
currents in RGCs are influenced by dendritic morphology

[15, 16] and receptor types [17], and the BC signal can be
transformed at the axon terminals both through interactions

with amacrine cells [18, 19] and through the generation of all-
or-nothing spikes [20–24]. Therefore, the temporal proper-

ties of the BC output have not been analyzed systematically
across different types of mammalian BCs. We recorded

calcium signals directly within axon terminals using two-

photon imaging [25, 26] and show that BCs can be divided
into Reight functional clusters. The temporal properties of

the BC output were directly reflected in their anatomical
organization within the retina’s inner synaptic layer: faster

cells stratified closer to the border between ON and OFF
sublamina. Moreover,Rthree fastest groups generated clear

all-or-nothing spikes. Therefore, the systematic projection
pattern of BCs provides distinct temporal ‘‘building blocks’’

for the feature extracting circuits of the inner retina.

Results and Discussion

Physiological Classification of Mouse Bipolar Cells and
Their Stratification

We recorded from 82 bipolar cells (BCs), 53 of which showed
reliable light responses (Experimental Procedures), and re-
constructed themorphology of their axon terminal arbors (Fig-
ure 1A). Calcium signals of different BC terminals displayed
distinctive features in response to a full-field square-wave light
stimulus, showing how the stimulus is encoded differentially
by different cells (Figure 1B). To sort individual BCs by their
light responses into distinct functional types, we used an
unsupervised clustering algorithm (Experimental Procedures;
see also Figure S1 available online). This allowed clustering
of BCs into eight functional types based solely on their physi-
ology (four OFF clusters: C1–4; three ON: C6–8; one ON-OFF: C5;
Figures 1C and 1D).
*Correspondence: thomas.baden@uni-tuebingen.de
The axonal stratification depths within the inner plexiform
layer (IPL) of functional groups were highly consistent within
each group, with the exception of cluster 8, and corresponded
to morphologies of the majority of BC types found in the
mouse retina [5] (Figure 2A). For clarity, cluster order was
arranged to match mean stratification depth in the IPL. OFF
and ON-OFF groups stratified in the OFF sublamina, whereas
ON groups stratified in the ON sublamina. Stratifying closest
to the inner nuclear layer (lowest depth), C1 likely reflects
type 1 and/or 2 OFF BCs, whereas C2 probably corresponds
to type 4 OFF BCs. C3–5 cells likely include type 3a/3b OFF
BCs. Stratifying near the border to the OFF sublamina, C6,7

presumably correspond to types 5a/5b, 6, and/or 7 ON BCs.
Finally, stratification depths of C8 cells varied considerably
throughout the ON sublamina and likely comprised represen-
tatives of type 8 and at least one of types 5–7 ON BCs. We
could not record calcium changes in the synaptic terminals
of type 9 ON BCs [27], because their axonal arbors are sparse
and difficult to segregate among heavily labeled rod bipolar
cell axon terminals. The latter were labeled but never re-
sponded to light, consistent with rods being nearly saturated
under our experimental conditions (Experimental Procedures).
Taken together, the different functional response clusters
comprise the majority of known anatomical types of BCs in
the mouse retina and provide for a comprehensive sampling
of the excitatory drive forwarded to the inner retina.

Systematic Organization of Response Kinetics across

the IPL
Response clusters markedly differed in kinetics, ranging from
sustained (C1,8) to slowly decaying (C2,3,7) and transient (C4–6)
(Figures 1B and 1C). We quantified rise and decay times
(Experimental Procedures) such that, in each case, higher
values denote faster calcium responses to steps of light.
With the exception of morphologically mixed cluster C8, both
rates of rise (Figure 2B) and decay index (Figure 2C) systemat-
ically varied with stratification depth, with the fastest cells
occurring nearest the border of the ON and OFF sublamina
(40% depth). Therefore, different temporal BC channels
systematically stratify at different depths of the IPL, with ‘‘tran-
sient’’ cells in the middle and ‘‘sustained’’ cells on either
extreme, in striking agreement with excitatory inputs recorded
in different types of retinal ganglion cells (RGCs) [10, 28]. In
addition, we confirmed the existence of an ON-OFF channel
in the OFF sublamina (C5) [10, 14]. Notably, OFF cells C1,3,4 ex-
hibited shorter response delays than all ON and ON-OFF cells
(Figure 2D), in agreement with shorter axons and expression of
inotropic rather than metabotropic dendritic receptors [17].
However, OFF cells C2 exhibited a longer response delay
compared to all other cells (Figures 2D and 2E).

Spikes in Mouse Bipolar Cells

In response to steps of light, many cells exhibited fast,
stochastic calcium events (Fevents) highly reminiscent of
calcium spikes recorded in vivo in fish BCs [22, 23] (Figure 1B).
Notably, such Fevents also occurred sporadically in the
absence of systematic light stimulation (e.g., in the ON period
of anOFF cell; Figure 1B, asterisk). To assess the propensity of
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Figure 1. Physiological Classification of Bipolar

Cell Light Responses

(A) Morphological reconstruction of a mouse

bipolar cell labeled with OGB-1. Top panel shows

resliced vertical cross-section; bottom left panel

shows a flat-mount view of terminal system;

bottom right panel shows the SD of each pixel

across the entire image stack of terminal system

in response to light stimulation (Experimental

Procedures). Scale bar represents 10 mm. INL,

inner nuclear layer; IPL, inner plexiform layer;

GCL, ganglion cell layer.

(B) Example fluorescence responses (DF/F) of

different bipolar cell (BC) terminal systems to

full-field light stimulation (4 s ON, 4 s OFF), color

coded by cluster. The response of the BC shown

in (A) is highlighted (dotted box).

(C) Mean responses of eight clusters identified in

53 BC responses to the stimulus used in (B). Error

bars represent SD.

(D) Average normalized response of 53 cells

sorted into eight clusters (n = 3, 11, 5, 4, 5, 13, 5,

and 7 cells in C128, respectively).

See also Figure S1.
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individual cells to generate Fevents, we calculated a high-
frequency index (HFi), based on the ratio of the power spectral
density of each response trace at high frequencies (F2) and at
the stimulus frequency (F1) (Figures 3A and 3B; Experimental
Procedures). Accordingly, a higher HFi denoted response
traces dominated by Fevents, indicative of underlying voltage
spikes. Plotting HFi as a function of IPL depth revealed that
BCs exhibiting frequent transient Fevents project nearest the
IPL center (Figure 3C). Across C1–7 cells, HFi correlated with
both rate of rise and decay index (Figures 3D and 3E; Experi-
mental Procedures), consistent with fast voltage spikes gener-
ating faster rates of rise and decay of the presynaptic calcium
signal compared to slower graded potentials. Across all func-
tional groups, C4–6 cells had the highest HFi, rates of rise, and
decay index, rendering those cells the most likely candidates
to exhibit all-or-nothing voltage spikes driving presynaptic
calcium. Two further lines of evidence support this idea. First,
waveforms of individual Fevents were stereotyped (e.g., C6

cell; Figures 4A and 4B). Both time courses and amplitudes
of automatically detected Fevents (Experimental Procedures)
in C4–6 cells were highly consistent within each recording
(correlation: 0.946 0.02; amplitudes: 0.976 0.11; n = 23 cells),
with no significant difference between stimulus-correlated and
uncorrelated Fevents (p > 0.5; n = 23
cells). Moreover, mean Fevents wave-
forms recorded in all individual C4–6 cells
closely resembled each other and were
highly reminiscent of an individual
voltage spike temporally filtered by the
(slower) calcium dynamics that were re-
corded [29] (Figure 4C). Second, Fevents
in C4 and C6 cells exhibited threshold
behavior. When stimulated with increas-
ing contrast 100 ms dark/light steps, all
C4,6 cells displayed highly reproducible
all-or-nothing calcium responses over
repeated trials (Figure 4D). Moreover,
the distribution of normalized response
amplitudes to different contrast steps
showed a biphasic distribution, with
peaks centered around 0 and 1 (Figure 4E). These findings
strongly suggest that Fevents in C4–6 cells directly reflect
underlying of all-or-nothing voltage spikes in the terminals
of BCs.
What of the remaining five response clusters? C3,8 cells

yielded an intermediate HFi and rates of rise and, like C4–6

cells, also exhibited Fevents (e.g., Figure 1B, traces 3 and 8).
However, in these cells, individual Fevents were more variable
in both amplitude and waveform (correlation: 0.87 6 0.11;
amplitudes: 0.83 6 0.31; n = 11 cells). Here, variability in the
shape of Fevents could result from (1) variable amplitude,
graded voltage deflections; (2) inhibitory inputs from amacrine
cells [19]; and/or (3) superposition of calcium transients driven
by multiple voltage spikes occurring in rapid succession.
C1,2,7 cells yielded the lowest HFis, rates of rise, and decay
index and did not generate clear, isolated Fevents (e.g., Fig-
ure 1B, traces 1, 2, and 7), suggesting that signaling in these
cells is dominated by graded potentials. However, even BCs
in the most sustained cluster 1 could be interpreted as gener-
ating spikes: the increase in variance during the end of the up
state in response to the full-field stimulus cannot be explained
by an expected increase in shot noise during elevated fluores-
cence periods. Instead, C1 cells may generate many spikes in



Figure 2. Stratification and Kinetics of BC Clusters

(A) Left: stratification of BC cluster terminal systems in IPL. Right: stratifica-

tion of known anatomical types [5].

(B and C) Rate of rise (B) and decay index (C) of all clusters as functions of

IPL stratification depth.

(D) Mean response delays of individual responses to steps of light. Delays

were evaluated at the time when rate of rise was steepest. C1,3,4: 106 6

18 ms; C2: 234 6 29 ms; C5,6,7,8: 146 6 54 ms.

(E) Average calcium responses of all OFF clusters to dark step highlights the

long response delay of C2 cells.

Error bars represent SD.

Current Biology Vol 23 No 1
50
fast succession that cannot be clearly resolved at the level of
calcium imaging. By the same argument, kinetically interme-
diate clusters 2, 3, and 7 could be interpreted as generating
spikes riding on top of large graded signals. Clearly, the slow
kinetics of calcium transients constrain the assessment of
the nature of underlying voltage events, and further studies
based on electrical and/or voltage imaging approaches will
be required. Another question that needs to be addressed in
a future study is whether spikes in mouse BCs are driven by
sodium and/or calcium currents. In previous reports, spikes
in mammalian BCs (two types in rat [21]; one type in ground
squirrel [24]) as well as the largest spikes electrically recorded
in fish BCs [23] rely on tetrodotoxin (TTX)-sensitive sodium
channels. It is therefore tempting to hypothesize that sodium
channels also contribute to the large spikes in presynaptic
calcium in mouse C4–6 BCs. In support of this notion, bath
application of TTX reduces the transience of excitatory inputs
to RGCs [30], which may in part be explained by the suppres-
sion of sodium spikes in the presynaptic BCs. Spike-like
events observed in other mouse BC types may be supported
by a combination of Na and calcium channels [23] or exclu-
sively by L-calcium channels [20].
In conclusion, our results demonstrate that the outputs of

different mouse BC types form distinct temporal channels,
which are systematically organized across the inner plexiform
layer [10], consolidating previous findings that the extraction
of key temporal features in the visual scene is mainly per-
formed upstream of RGCs [2, 31]. Moreover, light responses
of BC terminals near the border of the ON and OFF sublamina
generate spikes, which are expected to support a fast and
highly transient mode of transmitter release. In contrast,
more sustained channels stratify progressively toward each
outside border of the IPL and likely favor graded modes of
signaling.

Experimental Procedures

Animals and Tissue Preparation

All procedures were performed in accordance with the law on animal

protection (Tierschutzgesetz) issued by the German Federal Government

and were approved by the institutional animal welfare committee of the

University of Tübingen. For all experiments, we used 3- to 6-week-

old wild-type mice (C57BL/6J). Animals were housed under a standard

12 hr day/night rhythm. For Ca2+ imaging, animals were dark adapted

forR2 hr. The eyeswere quickly enucleated and hemisected in carboxygen-

ated (95% O2, 5% CO2) artificial cerebral spinal fluid (ACSF) containing

(in mM) 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3,

10 glucose, and 0.073 g/l L-glutamine (pH 7.4, 310 mOsmol). The retina

was dissected from the eye cup, flattened and mounted onto an Anodisc

(13, 0.1 mm pores, Whatman) with ganglion cells facing up, and electropo-

rated with Oregon green BAPTA-1 hexapotassium salt (OGB-1, Invitrogen)

as described previously [32]. The tissue was then placed under the micro-

scope, where it was constantly perfusedwith temperated (w36�C) carboxy-
genated ACSF with 10 mM sulforhodamine-101 (Invitrogen) added to

visualize blood vessels and damaged cells and left to recover for at least

1 hr before recordings were performed.

Two-Photon Ca2+ Imaging and Light Stimulation

We used a MOM-type two-photon microscope (designed by W. Denk, Max

Planck Institute for Medical Research [MPImF], Heidelberg, Germany;

purchased from Sutter Instruments). Both design and procedures were

described previously [6, 26]. In brief, the system was equipped with

a mode-locked Ti/sapphire laser (MaiTai-HP DeepSee, Newport Spectra-

Physics) tuned to w927 nm, two fluorescence detection channels for

OGB-1 (520 BP 30; AHF) and sulforhodamine-101 (622 BP 36; AHF), and

a 203 objective (XLUMPlanFL, 0.95 NA, Olympus; or W Plan-Apochromat,

1.0 NA, Zeiss) or 603 objective (CFI APO 603WNIR Physio, 1.0 NA, Nikon).

Image datawere acquiredwith custom software (CfNT byM.Müller, MPImF;

or ScanMbyM.Müller and T. Euler running under IgorPro 6.2,Wavemetrics),

taking 32 3 32 pixel images (15.8 frames per second) for time-lapsed

imaging or 512 3 512 pixel stacks (1 mm z steps) for morphological recon-

structions. Two different custom-built light stimulators were used. One con-

sisted of a DLP projector (K11, Acer), fitted with band-pass-filtered LEDs

(amber, z 578 BP 10; and blue/UV, HC 405 BP 10, AHF/Croma) that roughly

match the spectral sensitivity of mouse M and S opsins and were synchro-

nized with the microscope’s scanner. The other stimulator employed

a modified liquid-crystal-on-silicon i-glasses (EST) illuminated with equiva-

lent filtered LEDs (difference: 400 BP 20 instead of HC 405 BP 10; see [6]).

The light from either stimulator was focused through the objective. Stimu-

lator intensity (as photoisomerization rate, 103 , P 3 s21 per cone) was

calibrated as described previously [6, 33] to range from 0 (LEDs off) to

13.0 and 12.8 forM and S opsins, respectively. Due to two-photon excitation

of photopigments, an additional, steady illumination component of w104 ,
P3 s21 per conewas present during the recordings (for detailed discussion,

see [26]). For all experiments, the tissue was kept at a constant mean



Figure 3. Visual CodingUsing Stochastic FEvents

(A and B) Calculation of high-frequency index

(HFi). We calculated power spectral density (B)

from individual BC response traces to the 4 s

ON, 4 s OFF stimulus (A). A low power at the stim-

ulus frequency (F1) and high power and higher

frequencies (F2) yield a higher HFi (Experimental

Procedures).

(C) HFi of C1–8 cells varied with IPL stratification

depth.

(D and E) HFi of C1–7 cells scaled linearly with rate

of rise and decay index (rise: 0.98 6 0.25, decay:

5.7 6 1.3).

Error bars represent SD.
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stimulator intensity level for at least 30 s after the laser scanning started

before stimuli were presented. Data were analyzed offline using IgorPro

(Wavemetrics) and MATLAB (The MathWorks).

Analysis of Imaging Data

Regions of interest of individual BC terminal fields were automatically

placed based on thresholding SD of each pixel across the entire image stack

of terminal system to light stimulation (e.g., see Figure 1A, bottom right), ex-

tracted over time asDF/F and alignedwith the stimulus, whichwas recorded

in parallel with image acquisition to a precision of 2 ms. The 4 s ON, 4 s OFF

full-field stimulus was presented two to nine times per neuron (6.1 6 1.4

repetitions). Of 82 BCs recorded, we only included data from 53 that passed

a response quality criterion QC =
P

(s2/n)/ s2
m, where

P
(s2/n) is the mean

variance of all individual light responses and s2
m is the variance of the

mean light response. Transient events in DF/F traces were automatically

detected by application of a threshold criterion of 2.5 times the SD of
time-derivative response traces, as described

previously [22]. This method reliably identified

all fast calcium events (Fevents) in DF/F traces

(e.g., Figure 4A). Rate of rise was calculated for

individual light responses as the peak time deriv-

ative of normalized response traces following

a dark-light transition (light-dark transition for

OFF and ON-OFF cells). Decay index (DI) was

calculated as DI = (B 2 E)/(B + E), where B and

E are the mean fluorescence signal (DF/F) across

500 ms at the beginning and at the end of the

light response (dark response for OFFs and ON-
OFFs), respectively. This index was chosen over exponential fits which

were unreliable due to frequent stochastic spike events. High-frequency

index (HFi) was calculated as HFi = log (104 3 F1/F2), where F1 and F2 are

the power spectral density of the entire recording trace at the stimulus

frequency (0.125 Hz) and the mean power between 1 Hz and the recording

Nyquist frequency (7.8 Hz), respectively. Accordingly, a higher HFi indicates

responseswith ahigher prevalenceof high-frequency components, sugges-

tive of underlying voltage spikes (see also Figures 3C–3E). The scaling factor

of 104 was implemented to acknowledge the higher power at lower frequen-

cies, such that HFi ranged between 0 and 3 for the presented data.

Automatic Clustering

To divide the bipolar cell responses into functionally distinct types, we first

extracted eight features from the responses to individual steps using prin-

cipal component analysis. Specifically, we used the first five principal

components of DF/F traces as well as the first three principal components
Figure 4. Spikes in Mouse BCs

(A) Response of a C6 cell to a 0.5 Hz full-field light

stimulus, with Fevents highlighted (Experimental

Procedures).

(B) Superposition of Fevents detected in (A) and

average spike waveform.

(C) Superposition of average Fevents waveform

recorded in C4–6 cells (n = 5, 5, and 13 cells,

respectively).

(D) Top: superposition of 14 responses of a C4 cell

to a series of increasing intensity dark flashes.

Bottom: superposition of seven responses of

a C6 cell to increasing contrast light flashes,

normalized between baseline (0) and mean

Fevents amplitude (1).

(E) Left: histograms of normalized response

amplitudes to increasing contrast light/dark

flashes of four C4 and three C6 cells. Right:

response amplitudes across all contrast levels

pooled.
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of their temporal derivative (Figure S1A). Next, we fitted the responses to

individual steps (n = 322) using a Mixture of Gaussian model [34], as

implemented in the Statistics Toolbox of MATLAB. We constrained the

covariance matrices to be diagonal. To identify the optimal number of

clusters and the optimal regularization parameter, we performed a grid

search with candidate cluster numbers C = 1, . ,11 and candidate

regularization parameters 1022, . , 1026. For each combination of

candidate parameters, we evaluated the Bayesian information criterion,

BIC = 22 logL + M logN, where L is the likelihood of the model, M is the

number of parameters, and N is the number of individual responses.

The optimal model had seven clusters (Figure S1B), and we assessed

the quality of separation by rank-ordering posterior probabilities for

each cluster (Figure S1C). To assign a bipolar cell to a functional class,

we identified the cluster to which most of repetitions of the cell where

assigned. Typically, all repetitions of a cell were assigned the same cluster

(Figure S1D). Upon visual inspection (Figure S1E), we found ON cluster 7

to contain at least two different response types, one fully sustained and

containing a large degree of high-frequency components, and another

slowly decaying with lower power at high frequencies. We therefore

divided cells in cluster 7 into clusters 7 and 8, based on a threshold crite-

rion of HFi (see above) (Figure S1E).

Supplemental Information

Supplemental Information includes one figure and can be found with this

article online at http://dx.doi.org/10.1016/j.cub.2012.11.006.
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